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LETTER TO THE EDITOR 

On the validity of Dirac’s conjecture regarding first-class 
secondary constraints 

Mark J Gotay 
Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, 
Canada T2N 1N4 

Received 14 December 1982 

Abstract. Two examples are presented which clarify Dirac’s conjecture that ‘all first-class 
secondary constraints generate gauge transformations.’ In the general case the status of 
this conjecture is ambiguous, depending crucially upon the physical interpretation of the 
Lagrangian at hand. However, I propose a consistent general method of interpreting 
Lagrangians such that, relative to this interpretative framework, Dirac’s conjecture holds 
true. 

In his famous work on degenerate Lagrangian systems, Dirac (1964) conjectured that 
all first-class secondary constraints generate ‘gauge’ transformations which leave the 
physical state invariant. Recently, Cawley (1979) claims to have found systems for 
which this conjecture fails. In this article I present two examples which cast doubt 
upon this claim and indicate that a closer examination of Dirac’s conjecture is 
warranted. A proper understanding of this conjecture requires a detailed study of 
the symplectic geometry underlying classical mechanics (Gotay et a1 1978, Gotay and 
Nester 1979a, Gotay 1979); this work (with J Nester) will be published elsewhere. 
Throughout this paper I utilise only the standard canonical analysis (see Dirac 1964). 

Consider a degenerate Lagrangian system. Upon going over to the Hamiltonian 
formalism, one finds that the dynamics of the system is determined by the ‘total’ 
Hamiltonian 

H T =  H + U A ~ ~ ,  (1) 

where H is the usual Hamiltonian, uA are Lagrange multipliers, and c$A(q, p)  = 0 are 
primary constraints (= denotes ‘weak‘ equality). To ensure a physically well defined 
evolution, one implements Dirac’s well known ‘constraint algorithm’ by demanding 
that the constraints be preserved in time. These consistency conditions determine 
certain of the uA and also give rise to further (i.e., secondary) constraints which must 
be preserved as well. 

A constraint is first class provided its Poisson bracket with every other constraint 
weakly vanishes, and second class otherwise. Dirac showed that the constraint 
algorithm determines the multipliers of the second-class primary constraints in (1) 
while leaving arbitrary the coefficients of the first-class primary (FCP) constraints. 
Consequently, the latter are generating functions of motions which leave the physical 
state invariant (Le., gauge transformations). Let GI denote the set of all FCP constraints, 
and consider the hierarchy 
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This process must terminate with a set G E FC, where FC denotes the set of all 
functionally independent first-class constraints. Since elements of G1 generate gauge 
transformations, so must elements of G. 

Apparently, Dirac knew of no example in which the equality 

G=FC (Dirac ’s test) 

-assuring that all first-class constraints generate gauge transformations-did not 
hold, although he could not prove it in the general case. This led Dirac to conjecture 
that first-class secondary (FCS) constraints also generate physically irrelevant motions 
and hence should be included in the Hamiltonian as well. Dirac therefore proposed 
adjoining the FCS constraints t+ba with arbitrary multipliers U ,  to HT thereby obtaining 
the ‘extended’ Hamiltonian 

H E =  HT+w,t+ba. (2) 

Thus, Dirac reasoned that HE would give the most general evolution of the system. 
Numerous examples are now known for which Dirac’s test fails (Cawley 1979, 

Gotay et a1 1978, Gotay and Nester 1979a, Frenkel 1980, Allcock 1975, 1980). In 
fact (see Gotay and Nester 1979a and Gotay 1979) it can be shown that G =FC iff 
d$+ 0 for every FCS constraint $ produced by the constraint algorithm. However, the 
significance of the failure of Dirac’s test has not been made clear in the general case. 
Cawley (1979) asserts that this failure signals the presence of FCS constraints which 
do not generate gauge transformations, in the sense that H E  and HT give rise to 
physically inequivalent evolutions. In other words, Cawley equates the failure of 
Dirac’s test with the failure of Dirac’s conjecture. 

Lorentz-gauged electromagnetism is a system for which Dirac’s test fails and for 
which Cawley’s assertion is incorrect. The Lagrangian is 

J 

where A is a Lagrange multiplier. Transforming to the Hamiltonian description, one 
obtains 

T O  = A-’(Ao-akAk), T k  =Ak-$Ao 

along with a FCP constraint r A  = 0;  the total Hamiltonian is 

The constraint algorithm produces two FCS constraints -:(T’)~ = 0 (equivalent to 
7~ = 0) and akTk = 0; the field equations are 0 

A = U ,  7 j L 7 j 0 = 0 ,  k k  = apk‘ 
A 0  = akA k ,  A k  = T k  + dkAO. 

As the FCS constraint $ = satisfies dt+b = 0, Dirac’s test fails. Since ll, is 
ineffective? one may, following Cawley (1979), drop the term All,  from HT. Then one 

t In the sense that it generates no motion whatsoever. 
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calculates G = GI = {T‘}, whereas FC = {T’, T ” ,  akwk}. However, the extended 
Hamiltonian 

H E  = HT + J- [O1rO + 0 2 ( a k r  k ) ]  d3x 

gives rise to field equations identical to the above, except for the last two which are 
replaced by 

A o = a k A k  + W 1 ,  A k  = r k  +akAo-a@z 

respectively. These equations are clearly consistent with the known gauge freedom 
of the electromagnetic field. Despite the failure of Dirac’s test, the FCS constraints 
T O  and a k r  unquestionably generate gauge transformations (which, however, do not 
respect the Lorentz gauge condition). Thus, as Dirac surmised, replacing HT by HE 
simply reveals the full gauge-transforming power of the electromagnetic field. 

This example suggests that the failure of Dirac’s test should properly be regarded 
as a consequence of ‘built-in’ gauge conditions. Indeed, consider a Lagrangian in 
which one has deliberately fixed a gauge. The motions generated by the FCP constraints 
preserve this built-in gauge condition and, since G is generated by GI and HT, the 
motions generated by elements of G must also preserve the gauge condition. Further- 
more, note that Dirac’s test does not fail for theories where gauge conditions have 
not been imposed a priori (in particular, ordinary electromagnetism). From this 
standpoint, then, every first-class constraint generates a gauge transformation, but 
only those FCS constraints which are contained in G generate motions which preserve 
the built-in gauge conditions. 

Thus, the failure of Dirac’s test need not imply the failure of Dirac’s conjecture. 
On the other hand, Cawley’s assertion is valid provided one adopts an ‘unusual’ 
physical interpretation of the Lagrangian at hand. For example, one could conceivably 
interpret (3) as the Lagrangian, not for Lorentz-gauged electromagnetism, but rather 
for a massless divergence-free spin-1 field. In this case HT and HE are certainly not 
equivalent, and this is consistent with the claim that r o  and akTk do not generate 
gauge transformations. Since there does not appear to be any obvious reason why 
this alternative interpretation of (3) should be discounted, Dirac’s conjecture fails for 
the massless divergence-free spin-1 field. 

The correctness of Dirac’s conjecture therefore depends in an essential way upon 
the physical interpretation of the given Lagrangian. Although this question of interpre- 
tation may seem artificial in the case of (3), it is a serious matter for a Lagrangian 
which is poorly understood physically. As the above example illustrates, the underlying 
problem is that whenever Dirac’s test fails, one has no preferred intrinsic way of 
determining-from the Lagrangian alone-the ‘gauge equivalence class’ of a given 
physical state. To assign a precise physical meaning to the Lagrangian under consider- 
ation, it is thus first necessary to specify-by fiat-these gauge equivalence classes. 
But such a specification is entirely equivalent to an a priori determination of the 
status of Dirac’s conjecture: whether or not it fails and, if it fails, the extent to which 
it does so. 

Thus, there is in general a choice of physical interpretation to be made. In order 
to obtain a consistent general theory of constrained dynamical systems, it is imperative 
that this choice be part of the formal canonical analysis itself rather than having to be 
made on a Lagrangian-by-Lagrangian basis. For example, one has the ‘standard’ 
interpretation in which all FCS constraints are assumed to be gauge, and the failure 
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of Dirac’s test is regarded as an indication of the existence of built-in gauge conditions.? 
The standard interpretation allows one to append the FCS constraints to the Hamil- 
tonian as in (2) without changing the physical content of the theory.$ As opposed to 
the standard viewpoint, one has the possibility of ‘unorthodox’ interpretations in which 
certain FCS constraints are not gauge (in particular, according to Cawley (1979) those 
which are not in G). Such constraints certainly cannot be included in the Hamiltonian. 
For ordinary electromagnetism, all interpretations coincide. 

Which interpretation should one choose? To decide this, it is convenient to pass 
to the ‘reduced’ Hamiltonian formalism obtained by eliminating the physically 
irrelevant gauge variables from the theory. Dynamics is then played out on the 
reduced phase space (RPS) parametrised by the remaining (‘true’) dynamical vari- 
ables and their conjugate momenta. By definition, the reduced formaiism must satisfy 
the following criteria. 

(i) There is a one-to-one onto correspondence between physically distinct states 
of the system and points of the RPS. 

(ii) There exist canonical equations of motion on the RPS which, for given initial 
conditions, uniquely determine the time-development of the true dynamical degrees 
of freedom. 

It can be shown (Gotay and Nester 1979a, Gotay 1979) that the standard interpreta- 
tion is consistent with (i) and (ii), independent of the particular system under consider- 
ation. However, if one takes an unorthodox interpretation, this need not be the case, 
as the next example shows. 

The canonical analysis of the Lagrangian 

L = ( 1 / 2 x ) 4  (4) 
(due to J Nester) gives two first-class constraints px = 0 and -$(p,)* = 0 and the total 
Hamiltonian 

H T =  (x /2 )p:  +up, ,  

where U is arbitrary. The canonical equations are 

x = u ,  P x  = 0, y = o ,  py = 0. 

Since G = GI = { p , }  and FC = { p x ,  p , } ,  Dirac’s test fails. In this case one has a choice 
of two possible interpretations. 

According to the standard interpretation, the equivalent FCS constraint py = 0 
generates a gauge transformation which induces an arbitrary evolution of the variable 
y (the equation y = 0 being interpreted as a built-in gauge condition). The system 
is thus entirely gauge and the RPS consists of a single state which does not evolve in 
time. Conditions (i) and (ii) are satisfied, albeit trivially. 

On the other hand, consider the unorthodox interpretation in which p y  does not 
generate a gauge transformation. The equations of motion then imply that only y is 
a true dynamical variable ( p ,  is not dynamic since it is constrained to vanish). The 
unorthodox RPS is therefore one-dimensional, i.e., the system has 4 degrees of freedom! 
Consequently (ii) above is not satisfied for this system so that the reduced Hamiltonian 
formalism does not exist in any meaningful sense. Thus for Lagrangian (4), the 
unorthodox interpretation leads to physically absurd results. 

t Of course, the standard interpretation defines exactly what is meant by a ‘built-in gauge condition‘ 
t This result is also supported indirectly by the work of Dominici and Gomis (1980). 
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The above example is generic in the sense that typically, any unorthodox interpreta- 
tion will: (a) lead to physical inconsistencies; and (b) violate property (i) and/or 
(ii) of the reduced Hamiltonian formalism thereby rendering this notion meaningless 
(Gotay and Nester 1979a, Gotay 1979). On the other hand, the standard interpretation 
is always consistent in the sense that it can never suffer from the above two defects. 
Since, as emphasised earlier, the choice of interpretation should be included in the 
general canonical analysis itself rather than being decided upon on a case-by-case 
basis, the above arguments show that the standard interpretation is the only viable 
one. But, according to this interpretation, Dirac’s conjecture is true. 

Finally, it is worth mentioning the role of the Euler-Lagrange equations in the 
canonical analysis. Cawley (1979) correctly points out that the Hamiltonian evolution 
of the system must be consistent with that predicted by the EL equations. However, 
it is also essential to take into account the fact that there may exist (the equivalent of) 
FCS constraints in the Lagrangian formalism (Gotay and Nester 1979b), thus necessitat- 
ing an interpretation of Lagrangian dynamics as well. In particular, when comparing 
the Lagrangian and Hamiltonian dynamics of a system, it is important to take the 
same interpretation in both formalismst. 

Thanks are due to J Nester, R Cawley, G R Allcock and R H Gowdy for enlightening 
and stimulating discussions. 
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+ Failure to do so can lead to spurious conclusions such as those reached by Cawley (1979), whose ‘proof’ 
of the failure of the Dirac conjecture arose as a result of comparing ‘unorthodox’ Lagrangian dynamics 
with ‘standard’ Hamiltonian dynamics. 


